Tracheostomy risk factors and outcomes after severe traumatic brain injury

Stephen S. Humble, Laura D. Wilson, John W. McKenna, Taylor C. Leath, Yanna Song, Mario A. Davidson, Jesse M. Ehrenfeld, Oscar D. Guillamondegui, Pratik P. Pandharipande & Mayur B. Patel

To cite this article: Stephen S. Humble, Laura D. Wilson, John W. McKenna, Taylor C. Leath, Yanna Song, Mario A. Davidson, Jesse M. Ehrenfeld, Oscar D. Guillamondegui, Pratik P. Pandharipande & Mayur B. Patel (2016): Tracheostomy risk factors and outcomes after severe traumatic brain injury, Brain Injury, DOI: 10.1080/02699052.2016.1199915

To link to this article: http://dx.doi.org/10.1080/02699052.2016.1199915

Published online: 14 Oct 2016.
Tracheostomy risk factors and outcomes after severe traumatic brain injury

Stephen S. Humble1, Laura D. Wilson2,3, John W. McKenna1, Taylor C. Leath1, Yanna Song4, Mario A. Davidson4, Jesse M. Ehrenfeld5, Oscar D. Guillamondegui1, Pratik P. Pandharipande5,6, & Mayur B. Patel1,2,6

1Departments of Surgery and Neurosurgery, Division of Trauma & Surgical Critical Care, Vanderbilt University Medical Center, Nashville, TN, USA; 2Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; 3Department of Communication Sciences and Disorders, University of Tulsa, Tulsa, OK, USA; 4Department of Biostatistics, 5Departments of Anesthesiology, Surgery, and Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA, and 6Veterans Affairs (VA) Tennessee Valley Healthcare System, Nashville VA Medical Center, Nashville, TN, USA.

Abstract

Objective: To determine risk factors associated with tracheostomy placement after severe traumatic brain injury (TBI) and subsequent outcomes among those who did and did not receive a tracheostomy.

Methods: This retrospective cohort study compared adult trauma patients with severe TBI (n = 583) who did and did not receive tracheostomy. A multivariable logistic regression model assessed the associations between age, sex, race, insurance status, admission GCS, AIS (Head, Face, Chest) and tracheostomy placement. Ordinal logistic regression models assessed tracheostomy’s influence on ventilator days and ICU LOS. To limit immortal time bias, Cox proportional hazards models assessed mortality at 1, 3 and 12-months.

Results: In this multivariable model, younger age and private insurance were associated with increased probability of tracheostomy. AIS, ISS, GCS, race and sex were not risk factors for tracheostomy placement. Age showed a non-linear relationship with tracheostomy placement; likelihood peaked in the fourth decade and declined with age. Compared to uninsured patients, privately insured patients had an increased probability of receiving a tracheostomy (OR = 1.89 [95\% CI = 1.09–3.23]). Mortality was higher in those without tracheostomy placement (HR = 4.92 [95\% CI = 3.49–6.93]). Abbreviated injury scale-Head was an independent factor for time to death (HR = 2.53 [95\% CI = 2.00–3.19]), but age, gender and insurance were not.

Conclusions: Age and insurance status are independently associated with tracheostomy placement, but not with mortality after severe TBI. Tracheostomy placement is associated with increased survival after severe TBI.

Introduction

In the US, traumatic brain injury (TBI) affects more than 2 million individuals annually, with an economic impact of $76.5 billion, and hospitalized patients with severe TBI account for 90\% of this cost [1–3]. Patients with severe TBI remain intubated for prolonged periods of time and tracheostomy is frequently performed in the intensive care unit (ICU) setting for patients requiring prolonged ventilator support. Tracheostomy placement improves patient comfort, reduces sedation requirements, improves pulmonary toilet, reduces dead-space ventilation and may improve weaning from mechanical ventilation, in addition to preventing the complications associated with prolonged placement of an endotracheal tube [4–15].

Accurately determining which critically-ill patients need prolonged mechanical ventilation represents the major dilemma surrounding tracheostomy placement [8,9,12,13,16]. Possible explanations for the absence of objective criteria for tracheostomy placement, evidenced by a lack of consensus among previous studies, are variations in technical tracheostomy protocol and inclusion of heterogeneous critically-ill patient populations affected by a wide array of pathophysiologic states. Predicting the need for prolonged mechanical ventilation and determining the optimal timing of tracheostomy placement have been the subjects of numerous studies comparing early and late tracheostomy placement with patient characteristics and clinical outcomes [5,9,12–21]. However, despite numerous studies, definitive criteria for indications and timing of tracheostomy post-TBI remain absent, and the decision to place a tracheostomy remains dependent on the attending physician’s interpretation of the patient’s clinical status [5,13,22].

A few smaller studies, often lacking an appropriate control group, have investigated tracheostomy exclusively in patients with severe traumatic brain injury (TBI), a unique and specific
population in which airway management is a necessity and prolonged mechanical ventilation is common [9,10,17]. Given the unpredictable nature of coma recovery amidst multi-system injuries, patients with severe TBI often have tracheostomy placement during their ICU stay [5,9,10,12,17]. The purpose of this retrospective cohort study was to describe factors associated with tracheostomy placement after severe TBI and factors with associated clinical outcomes, including days of mechanical ventilation, ICU length of stay (LOS) and mortality.

Methods

The patient population for this retrospective cohort study consisted of adults admitted to a Level 1 trauma centre ICU between 2000–2011 who sustained severe TBI and required mechanical ventilation for at least 96 hours. Adult patients were defined as age 18 years and older; severe TBI was defined as admission Glasgow Coma Scale (GCS) score less than or equal to 8. Abbreviated Injury Scale (AIS)-Head score greater than or equal to 3 and intracranial haemorrhage observed on head CT. Subjects with confounding events (i.e. mortality, discharge, extubation, urgent tracheostomy placement) occurring before 96 hours were excluded. Utilizing this time point allowed for exclusion of patients with acutely non-survivable injury, those with less severe injury whose admission GCS may have been falsely reduced secondary to intoxication or pre-hospital sedation, as well as those with non-neurological injuries requiring tracheostomy, such as patients with severe maxillofacial injury preventing placement of an endotracheal tube. Furthermore, in the TBI population, intracranial pressure generally peaks by 96 hours [22–26]. Thus, the 96-hour exclusion provided a clinically stable patient population that required an evaluation and decision about airway management based on the patient’s likely clinical course.

Following IRB approval, the criteria outlined above were provided for data retrieval from the Trauma Registry of the American College of Surgeons (TRACS). From TRACS, patient demographics (i.e. age, sex, race, insurance status), variables specific to injury severity (i.e. GCS score, AIS-Head score, AIS-Face score, AIS-Chest score, Injury Severity Score [ISS]), ventilator days, ICU LOS and mortality up to 1-year were obtained. Mortality was additionally cross-referenced with the Social Security Death Index and the hospital’s Death Master File. It was then identified which patients had a tracheostomy placement during their admission. Data obtained from TRACS was complete and no imputation was required. To verify accuracy of data of the tracheostomy procedure reported to the TRACS 100 medical record numbers were selected from the severe TBI database at beginning, middle and end time intervals over the study period. Data were validated against the institution’s electronic medical record system and found to be 100% accurate. Data were maintained using REDCap, a secure database hosted at Vanderbilt University [27].

To determine the factors associated with tracheostomy placement, a logistic regression model was constructed that utilized covariates of age, sex, race, insurance status, GCS score and AIS (Head, Face, Chest) scores. Ordinal logistic regression models were fit for outcomes of ICU LOS and total ventilator days.

Comparison was made between those who received tracheostomy and those who did not, while controlling for age, sex, race, insurance status, GCS score and AIS (Head, Face, Chest) scores. These covariates were chosen due to their associations between both the independent variable (tracheostomy placement) and the outcomes of interest. To assess differences in survival time between the two cohorts, time to death was analysed using both unadjusted and adjusted models. Unadjusted analyses included Kaplan-Meier survival curves and log-rank tests, while adjusted analysis was performed by logistic regression. To limit immortal time bias, a Cox proportional hazards model was fit to adjust for the previously mentioned covariates and included mortality. A sensitivity analysis was also performed in which all the previously mentioned models were run, substituting ISS instead of the AIS sub-category scores. Given the collinearity of these variables identified in the sensitivity analysis and to avoid model over-fitting, the AIS sub-category scores were selected for inclusion in the main analyses, in particular due to the face validity that severe head, face and chest injuries may pre-dispose to tracheostomy placement, more so than abdominal or extremity injuries that can impact ISS.

Results

Using the inclusion criteria, 2929 patients were identified with severe TBI who were admitted to the institution’s trauma ICU between the years 2000–2011. After applying exclusion criteria, the cohort (n = 583) was sorted by tracheostomy (n = 350) vs no tracheostomy (n = 233). As illustrated in Table I, the groups were similar with respect to age, sex, race and insurance status and almost identical with respect to injury severity.

After controlling for covariates, age was a significant factor (Table II) associated with tracheostomy placement. Figure 1 illustrates the non-linear relationship between age and tracheostomy placement, such that the likelihood of tracheostomy in a patient with severe TBI increases from age 18 to 40, followed by a decreasing likelihood as age increases.

Table I. Descriptive statistics of no tracheostomy and tracheostomy groups on admission after severe TBI

<table>
<thead>
<tr>
<th>Variable</th>
<th>No tracheostomy (n = 233)</th>
<th>Tracheostomy (n = 350)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>36 (IQR = 24–53)</td>
<td>37 (IQR = 24–51)</td>
</tr>
<tr>
<td>Gender</td>
<td>76% Male</td>
<td>73% Male</td>
</tr>
<tr>
<td>Race</td>
<td>86% White</td>
<td>86% White</td>
</tr>
<tr>
<td>8% Black</td>
<td>7% Black</td>
<td>6% Hispanic</td>
</tr>
<tr>
<td>6% Hispanic</td>
<td>7% Hispanic</td>
<td>1% Other</td>
</tr>
<tr>
<td>Insurance</td>
<td>48% Private</td>
<td>53% Private</td>
</tr>
<tr>
<td>30% Public</td>
<td>34% Public</td>
<td>10% Uninsured</td>
</tr>
<tr>
<td>4% Workers’ compensation</td>
<td>3% Workers’ compensation</td>
<td>1% Other</td>
</tr>
<tr>
<td>GCS score</td>
<td>3 (IQR = 3–4)</td>
<td>3 (IQR = 3–4)</td>
</tr>
<tr>
<td>AIS-Head score</td>
<td>4 (IQR = 4–5)</td>
<td>4 (IQR = 4–5)</td>
</tr>
<tr>
<td>AIS-Face score</td>
<td>0 (IQR = 0–2)</td>
<td>0 (IQR = 0–2)</td>
</tr>
<tr>
<td>AIS-Chest score</td>
<td>3 (IQR = 0–4)</td>
<td>3 (IQR = 0.25–4)</td>
</tr>
<tr>
<td>ISS</td>
<td>34 (IQR = 26–41)</td>
<td>34 (IQR = 27–41)</td>
</tr>
</tbody>
</table>

Descriptors are either a percentage (%) or median (interquartile range = 25–75%).
beyond 40. For example, compared to a 20-year-old patient, a 30-year-old patient is 39% more likely to receive a tracheostomy (OR = 1.39; 95% CI = 1.05–1.84), but a 60-year-old patient has a 24% decreased probability of tracheostomy placement when compared to a 50-year-old patient (OR = 0.76; 95% CI = 0.62–0.92). Additionally, insurance status was found to be associated with tracheostomy placement. Patients with severe TBI who have private insurance are more likely to have received a tracheostomy compared to those without insurance (OR = 1.89; 95% CI = 1.09–3.23).

While controlling for covariates, including death during hospitalization, patients with severe TBI without tracheostomy were more likely to have a shorter ICU LOS (OR = 0.19; 95% CI = 0.13–0.27) and fewer days of mechanical ventilation (OR = 0.10; 95% CI = 0.07–0.14) compared to those who received a tracheostomy. As AIS-Chest scores increased from zero to four, the probability of having more mechanical ventilation days increased (OR = 1.52; 95% CI = 1.05–2.20).

Unadjusted survival analysis showed significantly higher survival in the tracheostomy group (Figure 2). Adjusted survival analysis using logistic regression demonstrated patients with severe TBI who received a tracheostomy had increased survival at 1, 3 and 12 months compared to those who did not (Table III). Adjusting for covariates in a Cox proportional hazard model, the hazard ratio for time to death in those without a tracheostomy is 4.92 (95% CI = 3.49–6.93). AIS-Head was another independent factor for time to death (hazard ratio = 2.53; 95% CI = 2.00–3.19). All models had similar results when reconstructed using ISS instead of the selected AIS sub-category scores. Age, gender and insurance status were not consistently associated with time to death.

Discussion
In this population of patients with severe TBI, age and lack of insurance were the only significant factors associated with tracheostomy placement and tracheostomy placement was independently associated with increased ICU LOS, increased duration of mechanical ventilation and increased survival. Although tracheostomy placement has been investigated extensively, studies for comparison are limited, as few are specific to patients with severe TBI and often lack an appropriate control group. Furthermore, the majority of studies evaluate optimal tracheostomy timing in smaller populations, rather than investigating factors associated with tracheostomy placement among a large cohort over time. This study is further strengthened by the consistency of bedside tracheostomy technique by a single protocol-driven
service over the study period, which is similarly and safely performed at many institutions [28–30]. The institution’s tracheostomy team utilizes a standardized process to perform bedside percutaneous tracheostomies for patients in both the trauma and surgical ICUs and functions as a consultation service for patients in other ICUs. This team consists of two physicians and a specifically trained procedural support nurse from the Division of Trauma and Surgical Critical Care and each team member has a dedicated, well-defined role for every tracheostomy. In addition to a dedicated team, this standardized process also includes use of a commercial percutaneous tracheostomy kit, a pre-procedural checklist, a pre-procedural timeout, as well as extra-long tracheostomy tubes for patients with a body mass index greater than 35 [31].

The findings show a non-linear relationship between age and tracheostomy, illustrated in Figure 1, which may be related to the prognostic value age has on clinical outcomes after severe TBI. Younger patients have better clinical outcomes and a higher probability of recovery after TBI, as seen in the prognostic IMPACT model [32]. The decreased likelihood of tracheostomy in elderly patients might be explained by perceived futility with escalating co-morbidities and deteriorating baseline functional status and by improved prognosis in the younger patients. Given the interplay between age, anatomic TBI severity (i.e. AIS-Head) and clinical TBI severity (i.e. GCS), a strength of the model is that it incorporates these key covariates [33]. Although this study seems to imply a provider-based survivorship bias influencing tracheostomy placement decisions, the ability to evaluate motivations surrounding tracheostomy placement is limited by the lack of baseline cognitive and functional status in this retrospective population analysis.

The association of insurance status with tracheostomy placement was unexpected. The observation that patients holding private insurance are more likely to receive a tracheostomy than uninsured patients might reflect unmeasured baseline differences in co-morbid disease and socio-demographic factors that may impact outcome after TBI. A prior 5-year single-centre all-comer TBI cohort did not show this association [34] and the observed difference in the present study may relate to the strict eligibility criteria focusing on critically-ill severe TBI subjects, who are at highest risk for prolonged respiratory failure. Interestingly, Scales and Ferguson [13] have previously suggested a compensation-based incentive for tracheostomy placement, given the high-paying coding group to which these patients are often assigned.

Those without insurance are not universally poor or unemployed. The uninsured represent people from a variety of backgrounds, but may include those with less family support, decreased health literacy, pre-existing illness and youth who elect to be uninsured [35,36]. Elements not measured in this study related to insurance status (e.g. educational level, employment, socioeconomic status, income, co-morbidities, social support) may steer surrogate decision-making regarding ventilator dependence, tracheostomy placement, and long-term planning. Insurance status may also impact long-term functional and quality-of-life outcomes [37]. The relationship between insurance status and tracheostomy placement likely reflects multiple factors. This limitation represents a potential future direction for study.

No correlation was found between injury severity (GCS score, AIS sub-scores or ISS in sensitivity analysis) and probability of tracheostomy placement, although the AIS-chest score was unsurprisingly a statistically significant predictor of prolonged mechanical ventilation. The lack of significant association between injury severity and tracheostomy placement is likely a function of utilizing admission severity scores for a population defined by tracheostomy placement on or after 96 hours. The lack of data for physiologic or organ-specific severity scores on subsequent hospital days, particularly at the 96-hour time point, is due to the ICU’s incomplete transition from paper to electronic medical records over the study period and represents a significant limitation of this study.

The proposed benefits of tracheostomy, aside from reducing the complications of prolonged intubation, suggest an expected decrease in ICU LOS and ventilator time. However, increased time intervals were observed for these variables in the tracheostomy cohort and variations among individual patients, their baseline illnesses and in-hospital course are likely too numerous and diverse to produce the observed effect. These findings might suggest accurate clinical prediction of those requiring prolonged ventilation, given the primary indication for tracheostomy placement in the TBI population is prolonged mechanical ventilation. Furthermore, with competing risks of time and mortality, increased mortality in the cohort not receiving a tracheostomy would produce artificially decreased ICU LOS and ventilator time. However, immortal time bias and death during hospital stay was controlled for in the adjusted Cox proportional hazard analysis [38]. Based on this analysis, the common assumption that patients in the cohort not receiving a tracheostomy were deemed to have a non-survivable injury did not receive a tracheostomy and died quickly in the ICU may not entirely explain the observed relationship. Decreased ICU LOS and decreased ventilator days in the no tracheostomy cohort could also be a function of a sub-group of survivors.

The findings demonstrate a survival benefit for patients with severe TBI that receive a tracheostomy. While tracheostomy has been suggested to provide multiple benefits over prolonged intubation [5,8–15], this study does not quantify these benefits. Although the two cohorts were quite similar with respect to baseline demographics and injury severity, it remains unclear whether or not tracheostomy independently improves survival outcomes in patients with severe TBI or whether both groups were at equal risk for prolonged mechanical ventilation, as opposed to unmeasured use of palliation, code status and/or withdrawal of care.

The major limitations of this study reflect its retrospective design. Inherent bias exists in the clinical decisions surrounding tracheostomy placement, with respect to injury severity, previous and predicted future days of mechanical ventilation, survival and futility of care; this study attempted to adjust for many of these factors in the regression models. Furthermore, excluding adult patients with severe TBI who experienced confounding events before 96 hours potentially introduced selection bias to the study population.
In summary, age and lack of insurance are independent factors associated with tracheostomy placement after TBI, but are not associated with mortality. Tracheostomy placement is associated with prolonged mechanical ventilation and longer ICU LOS, but also increased survival. Further investigations incorporating pre-hospitalization co-morbidities, baseline cognitive and functional status, time-varying covariates, and state-transition models will allow improved modelling of TBI outcomes important for patients, family members, care providers and healthcare organizations.

Acknowledgements
This was an oral presentation at the American College of Surgeons’ 99th Clinical Congress, Surgical Forum, Neurosurgery, 7 October 2013, Washington, DC.

Declaration of interest
The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this paper. The project was supported in part by the Translational Science Award (CTSA) Grant (UL1 TR000448 from NCATS/NIH). Author MBP was supported by the Vanderbilt Faculty Scholars Research Program, AHRQ Health Services (5T32HS013833-08), NIH R01HL111111, and the Eastern Association for the Surgery of Trauma Foundation Research Scholarship. Author PPP is supported by NIH grants (R01AG027472, R01HL111111, R01AG035117).

References

